Contenido principal del artículo

Autores

Introducción


Las economías con un fuerte componente STEM presentan mejores indicadores económicos y un mayor desempeño en términos de innovación y creación de nuevos empleos. Sin embargo, se sabe poco sobre la distribución salarial en STEM en Brasil y sus diferencias según el género y la región.


Objetivo


El objetivo de este artículo es investigar la distribución regional y la prima salarial de la fuerza laboral brasileña en STEM, analizando específicamente las disparidades de género entre los campos STEM y no STEM.


Metodología


Utilizando microdatos del Informe Anual de Información Social (RAIS), se aplica un modelo econométrico basado en la descomposición salarial Oaxaca-Ransom.


Resultados


La fuerza laboral STEM representa el 1,8% del mercado laboral formal y está distribuida de forma desigual: la mayor concentración se encuentra en el sureste y la menor en el norte y noreste. Las brechas de género en STEM varían por región, siendo menores en áreas STEM fundamentales y mayores en aquellas con más mujeres. Además, las primas salariales son más altas en el sur que en el norte.


Conclusiones


Nuestros hallazgos resaltan la distribución geográfica del trabajo en STEM en las regiones brasileñas y las diferencias regionales en los campos de conocimiento. Observamos que los hombres presentan mayores primas salariales que las mujeres en un conjunto más amplio de actividades.

Patricia Bonini, Universidade do Estado de Santa Catarina, Florianópolis, Brasil

PhD in Economics.

Fernanda Da Silva, Southern Methodist University (SMU)

Master in Economics.

Gabriela Sótero, Universidade do Estado de Santa Catarina, Florianópolis, Brasil

Baccalaureate in Economics.

Bonini, P., Da Silva, F., & Sótero, G. (2025). Perfil salarial y brecha de género en ciencia y tecnología: disparidades regionales en Brasil. Sociedad Y Economía, (55), e10114358. https://doi.org/10.25100/sye.v0i55.14358

Ahmadov, D. (2020). Science, technology, engineering, and math (STEM) effect on GDP in EU countries: Labor force perspective. Journal of Eastern European and Central Asian Research (JEECAR), 7(1), 114-121. https://doi.org/10.15549/jeecar.v7i1.236

Arbix, G., Latres, H. M. M., & Cahen, F. R. (2016). Science, technology and innovation policies in Brazil: Achievements and limitations. Review of Policy Research, 33(5), 523-543. https://doi.org/10.1111/ropr.12187

Ariza, J., & Raymond Bara, J. L. (2020). Technological change and employment in Brazil, Colombia and Mexico: Which workers are most affected? International Labour Review, 159(2), 137-159. https://doi.org/10.1111/ilr.12131

Beblo, M., Beninger, D., Heinze, A., & Laisney, F. (2003). Methodological issues related to the analysis of gender gaps in employment, earnings and career progression. ZEW.

Beede, D. N., Julian, T. A., Langdon, D., McKittrick, G., Khan, B., & Doms, M. E. (2011). Women in STEM: A gender gap to innovation. Economics and Statistics Administration Issue Brief, (04-11), 1-11. http://dx.doi.org/10.2139/ssrn.1964782

Bijnens, G., & Dhyne, E. (2021). The return on human (STEM) capital in Belgium (No. 401). NBB Working Paper. https://hdl.handle.net/10419/256812

Blau, F. D., & Kahn, L. M. (2000). Gender differences in pay. Journal of Economic Perspectives, 14(4), 75-99. https://doi.org/10.1257/jep.14.4.75

Bonini, P., & Custodio, C. F. (2023). The STEM wage premium in the main Brazilian technology clusters. International Journal of Trade, Economics and Finance, 14(4), 137-146. https://doi.org/10.18178/ijtef.2023.14.4.760

Bonini, P., Custodio, C. F., & da Silva, F. (2022). Força de trabalho em Ciência e Tecnologia: Santa Catarina no contexto brasileiro. Cadernos de Gênero e Tecnologia, 15(46), 80-104. https://doi.org/10.3895/cgt.v15n46.13884

Bordón, P., Canals, C., & Mizala, A. (2020). The gender gap in college major choice in Chile. Economics of Education Review, 77, 102011. https://doi.org/10.1016/j.econedurev.2020.102011

Borjas, G. J., & Ramey, V. A. (1995). Foreign competition, market power, and wage inequality. The Quarterly Journal of Economics, 110(4), 1075-1110. https://doi.org/10.2307/2946649

Bound, J., & Johnson, G. (1995). What are the causes of rising wage inequality in the United States? Economic Policy Review, 1(1), 9-17. https://doi.org/10.2139/ssrn.227482

Burke, R. J. (2007). Women and minorities in STEM: A primer. In R. J. Burke & M. C. Mattis (Eds.), Women and Minorities in Science, Technology, Engineering and Mathematics (pp. 3-27). Edward Elgar Publishing. https://doi.org/10.4337/9781847206879.00008

Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15(3), 75-141. https://doi.org/10.1177/1529100614541236

Cong, W., Ding, J., Gu, J., Jia, R., & Zeng, J. (2021). The influence of gender role on gender segregation of STEM majors in Chinese universities. In 2021 5th International Seminar on Education, Management and Social Sciences (ISEMSS 2021) (pp. 962-967). Atlantis Press. https://doi.org/10.2991/assehr.k.210806.183

Davis, J. C., Diethorn, H. A., Marschke, G. R., & Wang, A. J. (2021). STEM employment resiliency during recessions: Evidence from the COVID-19 pandemic (No. w29568). National Bureau of Economic Research. https://doi.org/10.3386/w29568

Deming, D. J., & Noray, K. L. (2018). STEM careers and the changing skill requirements of work (No. w25065). National Bureau of Economic Research. https://doi.org/10.3386/w25065

Diniz, C. C. (2001). A questão regional e as políticas governamentais no Brasil. CEDEPLAR/FACE/UFMG. https://core.ac.uk/download/pdf/6520047.pdf

Dunning, H. (2012). Life sciences wage survey 2012. The Scientist. http://www.the-scientist.com/?articles.view/articleNo/32918/title/Life-SciencesWage-Survey-2012/

Even, W. E., Yamashita, T., & Cummins, P. A. (2023). The STEM wage premium across the OECD. New Horizons in Adult Education & Human Resource Development, 35(1), 5-19. https://doi.org/10.1002/nha3.20300

Fayer, S., Lacey, A., & Watson, A. (2017). STEM occupations: Past, present, and future. Spotlight on Statistics, 1, 1-35.

Fernandes, A. (2021). Brazilian women underrepresented in STEM fields. Valor International. https://valorinternational.globo.com/business/news/2021/09/15/brazilian-women-underrepresented-in-stem-fields.ghtml

Gardeazabal, J., & Ugidos, A. (2004). More on identification in detailed wage decompositions. Review of Economics and Statistics, 86(4), 1034-1036. https://doi.org/10.1162/0034653043125239

Goldin, C., Autor, D., & Katz, L. F. (2020). Extending the race between education and technology. American Economic Review: Papers and Proceedings, 110, 347-371. https://doi.org/10.1257/pandp.20201112

Guimarães, J. F., Cavalcanti, T., & Neto, R. S. (2006). Accounting for labor income differences in Brazil: The role of human capital. Encontro Nacional de Economia, 34, 1-20. https://www.anpec.org.br/revista/vol8/vol8n1p23_43.pdf

Haddad, E. A., & Hewings, G. J. (2005). Market imperfections in a spatial economy: Some experimental results. The Quarterly Review of Economics and Finance, 45(2-3), 476-496. https://doi.org/10.1016/j.qref.2004.12.016

Halvorsen, R., & Palmquist, R. (1980). The interpretation of dummy variables in semilogarithmic equations. American Economic Review, 70(3), 474-475.

Hernández Herrera, C. A., & Hernández Herrera, M. C. (2023). Revelando la brecha de género en STEM: experiencias de mujeres egresadas de un Instituto Tecnológico Federal. Acta Universitaria, 33, 1-14. https://doi.org/10.15174/au.2023.3862

Holman, L., Stuart-Fox, D., & Hauser, C. E. (2018). The gender gap in science: How long until women are equally represented? PLoS Biology, 16(4), e2004956. https://doi.org/10.1371/journal.pbio.2004956

Jackson, S. M., Hillard, A. L., & Schneider, T. R. (2014). Using implicit bias training to improve attitudes toward women in STEM. Social Psychology of Education, 17, 419-438. https://doi.org/10.1007/s11218-014-9259-5

Juhn, C., Murphy, K. M., & Pierce, B. (1993). Wage inequality and the rise in returns to skill. Journal of Political Economy, 101(3), 410-442. https://doi.org/10.1086/261881

Kahn, S., & Ginther, D. (2017). Women and STEM. National Bureau of Economic Research. https://doi.org/10.3386/w23525

Katz, L. F., & Murphy, K. M. (1992). Changes in relative wages, 1963–1987: Supply and demand factors. The Quarterly Journal of Economics, 107(1), 35-78. https://doi.org/10.2307/2118323

Kemechian, T., Sigahi, T. F., Martins, V. W., Rampasso, I. S., De Moraes, G. H. S. M., Serafim, M. P., Filho, W. L., & Anholon, R. (2023). Towards the SDGs for gender equality and decent work: Investigating major challenges faced by Brazilian women in STEM careers with international experience. Discover Sustainability, 4(1), 11. https://doi.org/10.1007/s43621-023-00125-x

Kong, S., Carroll, K., Lundberg, D., Omura, P., & Lepe, B. (2020). Reducing gender bias in STEM. MIT Science Policy Review, 1(8), 55-63. https://doi.org/10.38105/spr.11kp6lqr0a

Landivar, L. C. (2013). Disparities in STEM employment by sex, race, and Hispanic origin. Education Review, 29(6), 911-922. https://doi.org/10.2307/41804215

Lincoln, A. E., Pincus, S., Koster, J. B., & Leboy, P. S. (2012). The Matilda Effect in science: Awards and prizes in the US, 1990s and 2000s. Social Studies of Science, 42(2), 307-320. https://doi.org/10.1177/0306312711435830

Magalhães, R. C., Buarque, B., Câmara, S. F., Tahim, E. F., & Carvalho, H. J. B. D. (2022). Relationships of scientific and technological production in research networks: The case of the Northeast Biotechnology Network (RENORBIO). Revista Brasileira de Inovação, 21, e022005. https://doi.org/10.20396/rbi.v21i00.8663725

Ministério do Trabalho e Emprego. (2002). Classificação Brasileira de Ocupações (CBO). Ministério do Trabalho e Emprego.

Ministério do Trabalho e Previdência. (2021). Relação Anual de Informações Sociais. Ministério do Trabalho e Previdência.

Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14(3), 693-709. https://doi.org/10.2307/2525981

Oaxaca, R. L., & Ransom, M. R. (1994). On discrimination and the decomposition of wage differentials. Journal of Econometrics, 61(1), 5-21. https://doi.org/10.1016/0304-4076(94)90074-4

Olsson, M., & Martiny, S. E. (2018). Does exposure to counterstereotypical role models influence girls’ and women’s gender stereotypes and career choices? A review of social psychological research. Frontiers in Psychology, 9, 392862. https://doi.org/10.3389/fpsyg.2018.02264

Owuondo, J. (2023). Breaking barriers: Understanding and overcoming societal, institutional, and cultural health challenges for women in STEM fields. IJLTEMAS, 12(10), 29-33. https://doi.org/10.51583/IJLTEMAS.2023.121004

Podobnik, B., Crawford, G., Lichtenstein, B., Lipić, T., Wild, D., Zhang, X., & Stanley, H. E. (2020). The new wealth of nations: How STEM fields generate the prosperity and inequality of individuals, companies, and countries. Chaos, Solitons & Fractals, 141, 110323. https://doi.org/10.1016/j.chaos.2020.110323

Ramírez-Corona, N., Calleja, A. C. A., Segovia-Hernández, J. G., & Aristizábal-Marulanda, V. (2022). Latin American women in chemical engineering: Challenges and opportunities on process intensification in academia/research. Chemical Engineering and Processing—Process Intensification, 181, 109161. https://doi.org/10.1016/j.cep.2022.109161

Ramos, T. M., Canuto, A. C. B., Souza, H. T. R., Costa, T. M., Fraga, F. V., Carvalho, F. L. O., & Bortoli, R. (2024). An analysis of biotechnology production in Brazil: A bibliometric analysis on the Patentscope platform. Revista de Gestão Social e Ambiental, 18(5), 1-14. https://doi.org/10.24857/rgsa.v18n5-170

Risco, R. F. G. (2024). RENACYT y las brechas de género en carreras STEM en el Perú. Interfases, (019), 39-50. https://doi.org/10.26439/interfases2024.n19.6685

Saucerman, J., & Vasquez, K. (2014). Psychological barriers to STEM participation for women over the course of development. Adultspan Journal, 13(1), 46-64. https://doi.org/10.1002/j.2161-0029.2014.00025.x

Schabel, B., & White, J. (2014). Pathways to computing careers. Communications of the ACM, 57(12), 5. https://doi.org/10.1145/2684460

Seemann, M. W., & Bonini, P. (2017). Trabalho STEM no Brasil de acordo com a CBO. UDESC.

Senado Federal. (2021). Projeto de Lei do Senado (PLS) 398/2018. Incentivo à participação da mulher nas áreas de ciência, tecnologia, engenharia e matemática. http://www12.senado.leg.br/noticias/materias/2021/03/09/senado-aprova-projeto-que-incentiva-a-participacao-da-mulher-na-ciencia

Shapiro, J. R., & Williams, A. M. (2012). The role of stereotype threats in undermining girls’ and women’s performance and interest in STEM fields. Sex Roles, 66, 175-183. https://doi.org/10.1007/s11199-011-0051-0

Silva Kubrusly, L., Sabóia, J., & Cezar, R. (2008). Diferenciação regional da geração de empregos formais no Brasil no quadriênio 2003/2006. Université Paris-Dauphine. https://doi.org/10.61673/ren.2008.462

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women's math performance. Journal of Experimental Social Psychology, 35(1), 4–-8. https://doi.org/10.1006/jesp.1998.1373

Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29, 119-140. https://doi.org/10.1007/s10648-015-9355-x

World Economic Forum. (2016). The industry gender gap: Women and work in the Fourth Industrial Revolution. World Economic Forum. https://www3.weforum.org/docs/WEF_FOJ_Executive_Summary_GenderGap.pdf